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This paper analyzes priority rules, such as those in Part 91.113 of the Federal Aviation
Regulations. Such rules determine which of two aircraft should maneuver in a given conflict
scenario. While the rules in 91.113 are well accepted, other concepts of operation for the
next generation of air traffic systems, such as self separation, may allow for different priority
rules. A mathematical framework is presented that can be used to analyze a general set
of priority rules and enables proofs of important properties. Specific properties considered
in this paper include safety, exclusiveness, and stability. A set of rules is said to be safe if
it ensures that it is never the case that both aircraft have priority. They are exclusive if
exactly one aircraft has priority in every situation. Finally, a set of rules is called stable if
it produces compatible results even under small changes to input data.

I. Introduction

When the trajectories of two aircraft are in conflict, safe conflict resolution requires the maneuvers of the
aircraft to be mutually compatible. If both aircraft are flying under Instrument Flight Rules (IFR), then
the air traffic controller ensures this compatibility. For instance, the controller may direct one aircraft to
completely resolve the conflict, or, in rare cases, may vector both aircraft simultaneously to form a compatible
action. In situations where at least one aircraft is flying under Visual Flight Rules (VFR), the pilots must
engage in a shared decision-making process that ensures safety. This concept is called coordination,7 which
comes in two types. If the maneuver decisions are communicated between the pilots, this coordination is
termed explicit.6 Alternatively, if the decisions are not communicated and yet remain safe, then this is
called implicit coordination.6 Each of these types of coordination can be divided into whether the action
requires both aircraft to maneuver (cooperative case) or only one aircraft to maneuver (non-cooperative
case). Non-cooperative maneuvers are desired for efficiency reasons, and cooperative maneuvers are desired
for safety reasons. Air traffic management concepts often prefer non-cooperative maneuvers when there is
sufficient time to recover from any unexpected conditions. Cooperative maneuvers may be needed when
such time is not available. State-based implicit coordination for cooperative maneuvers has been extensively
studied by Narkawicz and Muñoz.4 This paper presents an analytical framework to examine key safety
properties of implicit coordination for non-cooperative maneuvers, i.e., when only one aircraft is required
to maneuver. The focus of this analysis is on deciding which aircraft should maneuver rather than what
particular maneuver should be implemented.

Implicit coordination for non-cooperative maneuvers happens in the airspace today through the right-
of-way rules in Title 14 of the Code of Federal Regulations (CFR), also known as the Federal Aviation
Regulations.2 It has been referred to in the literature as right-of-way rules2 and priority rules.7 Behind each
of these concepts is a procedure whereby one aircraft is designated as having priority, and the other aircraft
is designated as burdened and is therefore required to perform an avoidance maneuver.1,8 The current right-
of-way rules for air traffic are primarilya captured in 14CFR91.113, for example, “(d) Converging. When
aircraft of the same category are converging at approximately the same altitude (except head-on, or nearly
so), the aircraft to the other’s right has the right-of-way.” Although these rules specifically apply in the
United States, the International Civil Aviation Organization (ICAO) has similar rules in Annex 2.

The priority rules in 91.113 are very well established. The authors are not aware of any effort, anywhere
in the world, to modify them. However, developing this analysis framework for priority rules has several
motivations. First, new airspace concepts such as self-separation7 and unmanned aircraft operations may
require different rules in some circumstances. The acceptance of these concepts will be contingent on the
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aRight-of-way rules for specialized operations are contained in 14CFR91.115 and 14CFR103.13.
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priority rules. Because 91.113 is so well-established, great scrutiny will be placed on any new set of priority
rules, and the analysis presented in this paper may alleviate concerns. Second, new surveillance technolo-
gies, such as ADS-B,5 enable different priority rules, which may provide more efficient operations in some
circumstances. Finally, in a growing number of applications, automation is used to implement priority rules.
Computers, by their nature, require precise specifications of priority rules. These specifications may lead
to safety-critical situations that would never arise with humans implementing the rules. For instance, data
uncertainty affects automated systems in very different ways than it affects humans.

An important property of the current rules in 91.113 is that the rules that are defined geometrically
depend only on the current states of the aircraft. An interesting aspect of the approach presented in this
paper is that such rules do not have to be applied at current states of the aircraft and could instead be
applied at future states along their planned trajectories. One choice not addressed in this paper is the
exact point at which the rules should be applied. The rules could be applied at the current states of the
two aircraft or, if the aircraft are in conflict, the states on their respective flight plans at the last waypoint
before the conflict. This latter situation is illustrated in Figure 1. Although this is a critical issue for an
airspace concept, it does not factor into the mathematical analysis presented here. It is not the purpose of
this paper to advocate for one state being used instead of another when determining priority. Rather, this
paper addresses the problem of analyzing priority rules, assuming that particular states have been chosen
and both aircraft use the same approach to choose these states.

Possible States For
Determining Priority
(Positions at Same
Future Time)

Figure 1. States at Waypoint Where Conflict is Created

A formal definition of priority rules and some of their key properties are presented in Section II. Section III
presents an extended discussion of the stability property of priority rules. Section IV examines the priority
rules in 91.113 by first formalizing key elements of the rules and then analyzing their important properties.
Finally, Section V analyzes a different set of priority rules intended for a self-separation application.

II. Priority Rules: Definition and Key Properties

In this paper, priority rules are considered from the perspective of one aircraft, called the ownship. The
other aircraft is referred to as the intruder. The airspace volume is modeled using a flat-earth projection
around a common projection point in a 3D rectangular system, i.e., aircraft positions and velocities are
viewed as points and vectors in R3. The states of the ownship and the intruder can be described by position
vectors so, si ∈ R3 and velocity vectors vo,vi ∈ R3, the subscripts of which indicate that the vector belongs
to the ownship or the intruder (o for ownship and i for intruder). For s ∈ R3, the notation s(x,y) represents

the 2D projection of s, i.e., the vector in R2 such that s(x,y) = (sx, sy). For any vector v2 in R2, v⊥2 refers
to the vector (v2,y,−v2,x), which is a 90-degree clockwise rotation of v2. Note that any other nonzero vector
w in R2 is parallel to v2 if w · v⊥2 = 0. Finally, if α and β are any Boolean values, e.g., they are equal to
either true or false, then α ∧ β, α ∨ β, α =⇒ β, and ¬β denote, respectively, the conjunction α and β, the
disjunction α or β, the implication α implies β, and the negation not β.

A set of priority rules can be viewed as a function on so, vo, si, and vi that returns true or false. If this
function returns true then the ownship has priority, and if it returns false then the ownship is burdened.
The assumption is that both aircraft will use the same priority function. Using this notation, priority rules
are formally defined as follows.
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Definition 1. A priority rule is a function Priority that takes so,vo, si, and vi as inputs and returns a
Boolean value, either true or false:

Priority(so,vo, si,vi) ∈ {true, false}.

This paper considers several important properties of priority rules that should be considered for any new
set of rules. Some of these properties are enumerated below.

Property 1 (Safety). It is never the case that both aircraft have priority.

If both aircraft have priority, then neither aircraft will maneuver, so this is the fundamental safety
property for priority rules. Formally, a priority rule is said to be safe if it is never the case that under the
same inputs both aircraft have priority. This property is defined mathematically with the predicate safe?,
given as follows.

safe?(Priority) ≡ For All so,vo, si,vi ∈ R3 : Priority(so,vo, si,vi) =⇒ ¬Priority(si,vi, so,vo).

Property 2 (Exclusiveness). Exactly one aircraft has priority.

A trivial way to satisfy the safety property safe? is to always burden both aircraft, which would defeat
the purpose of priority rules. To ensure that priority rules are useful, it should be true that, in most cases,
only one aircraft has priority. This property is mathematically defined as follows.

exclusive?(Priority) ≡ For All so,vo, si,vi : [Priority(so,vo, si,vi) ∧ ¬Priority(si,vi, so,vo)]∨
[Priority(si,vi, so,vo) ∧ ¬Priority(so,vo, si,vi)].

The term exclusive can also be used for only a subset of possible input states. For example, one could say
that a particular priority rule is exclusive for all states that are not in a head-on conflict.

Property 3 (Stability). Even with small changes to the inputs, priority produces compatible outputs.

If both aircraft use the same safe and exclusive priority function and identical input data, they will, by
definition, provide compatible outputs. Although it is reasonable to assume that both aircraft will use the
same priority function, with data dropouts and communication errors it is unrealistic to assume that both
aircraft will use the same input data. The communication necessary to ensure both aircraft use the same
data is just as complex as explicit coordination. This property ensures that priority produces compatible
outputs in the real-world situation of slight data inconsistencies without the complexity equivalent to explicit
coordination. The formal definition of stability is mathematically more subtle than the definitions of safety
and exclusiveness. Stability will be discussed in detail in Section III.

Although not the subject of this paper, there are properties of priority rules that are not listed above but
are still very important to consider. For instance, any new set of priority rules should be compared with the
current rules as outlined in 91.113. Another important property is whether sufficient data is available from
surveillance system (e.g., pilot’s eyes or ADS-B) to determine priority by the rule. Finally, a rule should be
geometrically comprehensive and therefore include no gaps or singularities. This last property is true for
any priority function, such as those presented above, because if Priority(so,vo, si,vi) is computable, then
every input produces some output, so the rule has no gaps.

III. Stability of Priority Rules

This section explores stability through several detailed mathematical definitions of stability. Each of the
definitions for stability given below involve a specific formal definition of compatible in the stability property.

Stability depends on the definition of small changes to the input data. In the definition below, s,v are the
vectors that represent the aircraft’s perception of its own state at one instant in time and s′,v′ represent that
aircraft’s state as perceived by the other aircraft. The values εs,xy, εv,xy, εs,z, εv,z are positive real numbers
defining a small change in the aircraft’s state vectors. The relationship between these two views of the state
of an aircraft is defined as follows.

perturb?(εs,xy, εv,xy, εs,z, εv,z, s,v, s
′,v′) ≡ ‖s(x,y) − s′(x,y)‖ < εs,xy ∧

‖v(x,y) − v′(x,y)‖ < εv,xy ∧
|sz − s′z| < εs,z ∧
|vz − v′z| < εv,z.
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The first definition of stability states that if the data used by the intruder to determine priority is a small
perturbation of the data used by the ownship, then it is still the case that exactly one of them has priority
and the other does not. This is formalized in the following mathematical statement.

Definition 2 (Strong Stability). For all so,vo, si,vi ∈ R3, there exists εs,xy, εv,xy, εs,z, εv,z > 0 such that
for all s′o,v

′
o, s
′
i,v
′
i ∈ R3,

perturb?(εs,xy, εv,xy, εs,z, εv,z, so,vo, s
′
o,v
′
o) ∧ perturb?(εs,xy, εv,xy, εs,z, εv,z, s

′
i,v
′
i, si,vi) =⇒

[Priority(so,vo, si,vi) and ¬Priority(s′i,v
′
i, s
′
o,v
′
o)] or

[Priority(s′i,v
′
i, s
′
o,v
′
o) and ¬Priority(so,vo, si,vi)]

Intuitively, if the aircraft are near the point where the ownship switches from burdened to priority, then
this stability property allows both aircraft to perceive the other aircraft as burdened and therefore violate
the safety property. Mathematically, this is expressed in the following theorem.

Theorem 1. It is impossible to define priority rules that are safe (Property 1), exclusive (Property 2), and
strongly stable (as represented by Definition 2).

A sketch of the proof of this theorem is to observe that Priority must return exactly the same result
if the inputs are changed a small amount. However, this implies that Priority is a continuous function. If
false is represented by 0 and true is represented by 1, then the Intermediate Value Theorem states that
such a function must be constant. A constant true function is unsafe and a constant false function is not
exclusive. A priority function that satisfies such a strong stability condition is not useful.

A weaker definition of stability can be provided if one allows cases where both aircraft are burdened
when the input data is near a point where priority would change from one aircraft to another. In this way,
the rules are exclusive as long at the data is away from a priority-swapping point. This paper considers two
alternate forms of stability, referred to as basic stability and uniform stability. Both of them allow for cases
where neither aircraft has priority.

The first alternate definition of stability is referred as basic stability. The only time when safety of the
priority function Priority becomes a problem is when both aircraft have priority at the same time. One
way to mitigate this situation is to ensure that when one aircraft has priority, it will continue to have priority
under slight data perturbations. This is an informal way to define basic stability; a formal mathematical
definition is given below.

Definition 3 (Basic Stability).

basic stability?(Priority) ≡
For All so,vo, si,vi ∈ R3 : There Exists εs,xy, εv,xy, εs,z, εv,z > 0 : For All s′o,v

′
o, s
′
i,v
′
i ∈ R3 :

perturb?(εs,xy, εv,xy, εs,z, εv,z, so,vo, s
′
o,v
′
o) ∧ perturb?(εs,xy, εv,xy, εs,z, εv,z, si,vi, s

′
i,v
′
i) ∧

Priority(so,vo, si,vi) =⇒ Priority(s′o,v
′
o, s
′
i,v
′
i).

This definition would be trivially satisfied if the function Priority always returned true, which would
be unsafe. However, if safe?(Priority) and basic stability?(Priority) both hold, then for any aircraft
that has priority, even under slight perturbations of the data, it will still have priority and the other aircraft
will not.

As it turns out, there is a close relationship between priority functions that satisfy the predicates safe?
and basic stability? and continuous functions on so,vo, si,vi that return a real number, which is stated
in the following theorem.

Theorem 2. If f is a continuous function that takes so,vo, si,vi as inputs and returns a real number and
also satisfies the property that

f(so,vo, si,vi) = −f(si,vi, so,vo)

for all possible inputs so,vo, si,vi, then the priority function Priorityf defined by

Priorityf (so,vo, si,vi) ≡ ( f(so,vo, si,vi) > 0)

satisfies basic stability?(Priorityf ) and safe?(Priorityf ).
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The more interesting property is that the reverse implication is true, a result stated in the next theorem.

Theorem 3. If basic stability?(Priority) and safe?(Priority), then there exists a continuous function
f as defined in Theorem 2. That is, Priority = Priorityf and f has the property that f(so,vo, si,vi) =
−f(si,vi, so,vo) for all inputs.

The problem with basic stability is that, even though an aircraft with priority continues to have priority
even under perturbations, the size of these allowed perturbations may be smaller or larger depending on the
input data. For some inputs, the size of the allowed perturbations can very small. Thus, a notion of stability
is also needed that, for a fixed bounded range of the input data (e.g., both aircraft are within 100 km of each
other traveling at no more than 1000 kts), gives a fixed size for perturbations such that all perturbations
less than that size are allowed. However, an allowed perturbation in this context does not mean that the
aircraft with priority will continue to have priority, but rather that if one aircraft has priority, then the other
aircraft will not have priority, even using the perturbed data. This is notion referred to as uniform stability
in this paper.

Definition 4 (Uniform Stability). Given bounds on the input data, there exists a certain size for perturba-
tions such that, if an aircraft has priority, then for any perturbation less than this size, the other aircraft
will not have priority. This is formalized in the following predicate.

uniform stability?(Priority) ≡
There Exists Ms,xy,Mv,xy,Ms,z,Mv,z > 0 : For All so,vo, si,vi ∈ R3 :

There Exists εs,xy, εv,xy, εs,z, εv,z > 0 : For All s′o,v
′
o, s
′
i,v
′
i ∈ R3 :

‖so(x,y)‖ < Ms,xy ∧ ‖si(x,y)‖ < Ms,xy ∧ ‖vo(x,y)‖ < Mv,xy ∧ ‖vi(x,y)‖ < Mv,xy ∧
|soz| < Ms,z ∧ |siz| < Ms,z ∧ |voz| < Mv,z ∧ |viz| < Mv,z∧
perturb?(εs,xy, εv,xy, εs,z, εv,z, so,vo, s

′
o,v
′
o) ∧ perturb?(εs,xy, εv,xy, εs,z, εv,z, si,vi, s

′
i,v
′
i)∧

Priority(so,vo, si,vi) =⇒ ¬Priority(s′i,v
′
i, s
′
o,v
′
o)

In this definition, the positive real numbers Ms,xy,Mv,xy,Ms,z,Mv,z are bounds on the input data, and
the parameters εs,xy, εv,xy, εs,z, εv,z are bounds on the size of the perturbations allowed in the data, which
will change as the bounds Ms,xy,Mv,xy,Ms,z,Mv,z change. That is, as the values of Ms,xy,Mv,xy,Ms,z,Mv,z

get larger, more possible input states will be required to satisfy the stability property, so the maximum
perturbation sizes εs,xy, εv,xy, εs,z, εv,z will often decrease.

In general, the priority functions that satisfy the predicate basic stability? are not the same as those
that satisfy the predicate uniform stability?, even when they also satisfy safe?. For instance, the function
Priority(so,vo, si,vi) = (soz > siz) satisfies safe? and basic stability? but not uniform stability?.
The function Priority(so,vo, si,vi) = (so = si + (10, 10, 0) ∧ vo = vi + (100, 100, 0)) satisfies safe? and
uniform stability? but not basic stability?. In Section V, a specific priority function is proposed that
satisfies all three predicates: safe?, basic stability?, and uniform stability?. Theorem 3 implies that
this priority function is therefore equal to Priorityf for a continuous function f , which is explicitly defined
in Section V.

IV. Formalization of 91.113 Priority Rules

The right-of-way rules for air traffic given in Title 14 of the Code of Federal Regulations, Part 91.113,2

can be formalized with a priority function as follows. This is a relatively simple formalization of the rules
in 91.113 and is intended to illustrate the usefulness of the formal framework for analyzing priority rules
described in the previous sections. While many of the rules in 91.113 are operational, such as the rule that
a hot air balloon always has priority over any other category of aircraft, the rules for aircraft of the same
category flying at the same altitude are based on the states of the aircraft. In particular, rules (d), (e), and
(f) in 91.113 state the following.

• (d) When aircraft of the same category are converging at approximately the same altitude (except
head-on, or nearly so), the aircraft to the other’s right has the right-of-way.

• (e) When aircraft are approaching each other head-on, or nearly so, each pilot of each aircraft shall
alter course to the right.
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• (f) Each aircraft that is being overtaken has the right-of-way.

These statements can be formalized as follows. Horizontal convergence between the aircraft is equivalent to
the following condition.

Definition 5. horiz converging?(so,vo, si,vi) ≡ (so(x,y) − si(x,y)) · (vo(x,y) − vi(x,y)) < 0

If this condition is true, then the aircraft are getting closer at the states represented by so, vo and si, vi.
Whether the intruder is on the right of the ownship can be formalized as:

Definition 6. on right?(so,vo)(si,vi) ≡ (si(x,y) − so(x,y)) · vo(x,y)
⊥ > 0

If the aircraft are approaching, either head-on or with one overtaking the other, then the horizontal
relative position vector between the aircraft, namely so(x,y) − si(x,y) is parallel to the both vo(x,y) and
vi(x,y), which are therefore parallel to each other. The condition that distinguishes between the head-
on case and the overtaking case is whether vo(x,y) and vi(x,y) point in the same direction or in opposite
directions. Conditions defining the head-on and overtaking cases are given as follows.

Definition 7.
head on?(so,vo, si,vi) ≡ (so(x,y) − si(x,y)) · vo(x,y)

⊥ = 0 ∧
(si(x,y) − so(x,y)) · vi(x,y)

⊥ = 0 ∧
(so(x,y) − si(x,y)) · vo(x,y) < 0 ∧

(si(x,y) − so(x,y)) · vi(x,y) < 0

Definition 8.
overtaking?(so,vo, si,vi) ≡ (so(x,y) − si(x,y)) · vo(x,y)

⊥ = 0 ∧
(si(x,y) − so(x,y)) · vi(x,y)

⊥ = 0 ∧
(so(x,y) − si(x,y)) · vo(x,y) < 0 ∧

(si(x,y) − so(x,y)) · vi(x,y) > 0

Note that the two conditions defined above are identical except for the last inequality symbol. The
condition given by overtaking? states that the ownship is overtaking the intruder. One way to formally
interpret rules D, E, and F in 91.113 is to say that the ownship has priority precisely when it is to the right
of, or being overtaken by, the intruder. That is, we could define

rules 91.113 first try(so,vo, si,vi) ≡ on right?(si,vi, so,vo) ∨ overtaking?(si,vi, so,vo).

This certainly seems like a reasonable interpretation of 91.113. However, there is a problem:

Theorem 4. The priority function rules 91.113 first try allows cases where both aircraft have priority.
That is, safe?(rules 91.113 first try) does not hold.

A specific case where both aircraft have priority when using this priority function is given in Figure 2.
In this figure, each aircraft is to the right of the other aircraft, and would therefore have priority. It is
interesting that it is unclear from the language in 91.113 which aircraft would have priority in this case.

One way to fix this problem is to only give the ownship priority when it is either being overtaken or is
to the intruder’s right and does not have the intruder to its right. The problem in that case is that it is not
exclusive for states where both aircraft are on the other’s right. Thus, there is a large set of states where
neither aircraft has priority.

Another way to fix the exclusiveness and safety issues inherent in the formalizations of 91.113 provided
above is to project the states of the aircraft backward in time to when exactly one aircraft is on the other’s
right and apply the rules at that time. This is possible because in the cases where each aircraft is to the
other’s right, the intersection point of their trajectories has already occurred. Thus, projecting the states
backward to a time before the aircraft crossed that intersection point will give a past state at which exactly
one aircraft was on the other’s right. The rules can then be applied at that state, where exactly one aircraft
will have priority. It can be seen from standard geometric reasoning that the following function determines
whether the intruder was on the ownship’s right at this past state.

Definition 9. was on right?(so,vo, si,vi) ≡ vo(x,y) · vi(x,y)
⊥ > 0
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Figure 2. Each Aircraft is On the Other’s Right

Using this condition instead of the on right? condition in the formalization of the 91.113 rules gives the
following priority function.

rules 91.113(so,vo, si,vi) ≡ was on right?(si,vi, so,vo) ∨ overtaking?(si,vi, so,vo).

It is easy to see that was on right?(si,vi, so,vo) and was on right?(so,vo, si,vi) cannot both hold at the
same time, which partly implies the following theorem.

Theorem 5. The priority function rules 91.113 never allows cases where both aircraft have priority. That
is, the condition safe?(rules 91.113) holds.

The function rules 91.113 is also exclusive for all but a few cases.

Theorem 6. The priority function rules 91.113 is exclusive for inputs states where the aircraft are con-
verging, not in a head-on conflict, and not on trajectories that are both parallel and non-intersecting.

Interestingly, the function rules 91.113 does not satisfy the stability condition basic stability?

(rules 91.113). However, the failure of stability only happens in the overtaking case. That is, if the
intruder is overtaking the ownship, and hence the ownship has priority, a tiny perturbation of the data can
produce states where the condition was on right? holds, meaning that the intruder is (or was) to the right
of the ownship, giving the intruder priority in those states.

V. A Proposed Priority Function

The previous section showed that the priority rules in Part 91 of the Federal Aviation Regulations
can indeed be formalized mathematically, and that some important properties can be verified about them,
while others do not hold. This section shows that those rules are not the only useful rules that have ge-
ometric intuition behind them. Another priority function is presented that satisfies the predicates safe?,
basic stability?, and uniform stability?, and it agrees with the current rules in 91.113 in some im-
portant scenarios. This is accomplished in two stages: (1) An informal description of the rules, and (2) a
precise mathematical definition of the priority function.

V.A. An Informal Description of the Rules

The rules are presented below, in an informal and non-mathematical description of the rules. These rules are
intended for a self-separation application7 and may be applied at a much longer time horizon than 91.113.
For this reason, these rules project the future state of the aircraft just before the encounter.

• If the two aircraft have different flight modes (ascending/descending/cruising), and neither of the
aircraft is near a vertical speed that would change this fact, then the aircraft with the lower vertical
speed has priority.

• If either aircraft is near a vertical speed where it would change flight modes and either the current or
the new mode is possibly equal to the mode of the other aircraft, then neither aircraft has priority.
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• Pick a future time just before the encounter, and consider the states of each aircraft at that time. At
these future states, calculate the projections of each aircraft’s horizontal velocity along the path from
its position toward the position of the other aircraft. If the lengths (speeds) of these projections are
close, then neither aircraft has priority. Otherwise, the aircraft whose projection has the smallest speed
has priority. See Figure 3.

Aircraft With Priority
(Shorter Projection)

Future States
Figure 3. Determining Priority Based on Projections

V.B. Flight Modes

As indicated by the informal rules above, the term flight mode in this paper refers to either descending,
ascending, or cruise. The definition of cruising is that the absolute value of the vertical speed is no greater
than a fixed value (e.g., 150 ft/minute), treated here as a parameter VCB, which is short for vertical cruise
buffer. If the state of the ownship aircraft is given by the position and velocity vectors so,vo, then this
means that the ownship is descending if voz < −VCB, ascending if voz > VCB, and cruising if |voz| ≤ VCB.
However, due to perturbations in the data, when computing priority the ownship and intruder may be
using slightly different data. Thus, if voz is just slightly greater than −VCB, the ownship may be in cruise
mode, while the data used by the intruder implies that the vertical speed of the ownship is less than −VCB,
in which case the intruder thinks that the ownship is descending. If this change has an impact on which
aircraft has priority, then uniform stability of the rules may be violated. Thus, the concept of being near
this decision point (cruising/descending) is introduced, and a new parameter VSafetyBuffer is introduced
to define what nearness to this decision point means mathematically. The parameter VSafetyBuffer is a
positive real number (VSafetyBuffer > 0) such that VSafetyBuffer < VCB.

If the ownship’s vertical speed voz is within VSafetyBuffer of −VCB, then it is near the vertical speed
where it will change between cruising and descending. This motivates the definitions of the following predi-
cates.

descending(voz) ≡ (voz < −VCB− VSafetyBuffer)

cruising(voz) ≡ (|voz| < VCB− VSafetyBuffer)

ascending(voz) ≡ (voz > VCB + VSafetyBuffer)

The number VSafetyBuffer basically gives the amount of uncertainty that is allowed in the vertical speed of
an aircraft. That is, if the vertical speed varies no more than VSafetyBuffer, then it is known, for instance,
that an aircraft is definitely descending if its vertical speed is less than −VCB−VSafetyBuffer. On the other
hand, to know with certainty that an aircraft is not descending, its vertical speed should be greater than
−VCB + VSafetyBuffer. Similar reasoning can be used to determine conditions under which it is known
that an aircraft is not ascending or not cruising. These conditions are all specified by the following negative
predicates.

not descending(voz) ≡ (voz > −VCB + VSafetyBuffer)

not cruising(voz) ≡ (voz > VCB + VSafetyBuffer ∨ voz < −VCB− VSafetyBuffer)

not ascending(voz) ≡ (voz < VCB− VSafetyBuffer)

If it is known that the ownship and the intruder are currently in different flight modes, for instance that
the ownship is ascending and the intruder is descending, then the aircraft with the lower vertical speed will
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have priority. This is consistent with rule (G) of part 91.113, which states that when an aircraft is landing,
it has priority over other aircraft in flight.

Thus, the vertical rules will apply if it can be determined using the predicates defined above that the
aircraft have different modes. This motivates the definition of the following predicate, which returns true
precisely when it is known that the vertical rules will apply.

vertical rules apply(vo,vi) ≡ (descending(voz) ∧ not descending(viz))∨
(descending(viz) ∧ not descending(voz))∨
(cruising(voz) ∧ not cruising(viz))∨
(cruising(viz) ∧ not cruising(voz))∨
(ascending(voz) ∧ not ascending(viz))∨
(ascending(viz) ∧ not ascending(voz))

Alternatively, if it is known, given uncertainties, that both aircraft have the same mode, then a horizontal
rule can apply. The following predicate determines when this is the case.

horizontal rules apply(vo,vi) ≡ (descending(voz) ∧ descending(viz))∨
(cruising(voz) ∧ cruising(viz))∨
(ascending(voz) ∧ ascending(viz))

It is also possible that neither vertical rules apply(vo,vi) nor horizontal rules apply(vo,vi) holds,
in which case one aircraft has a vertical speed within VSafetyBuffer of either VCB or −VCB, its mode is
therefore uncertain, and it may or may not have the same mode as the other aircraft. The aircraft in such
a situation are said to be in a vertical deadband in this paper.

V.C. The Mathematical Definition of the Priority Function

This section uses the flight modes presented above to build a priority function, P. As described in the first
bullet of section V.A, the aircraft with the smaller vertical speed has priority, if the vertical rules apply. If
the horizontal rules apply then more formulas are needed, which are presented in this section.

If horizontal rules apply(vo,vi) holds, then a rule is needed to determine priority that is based on
the horizontal geometry of the situation. The idea is to pick future states of the aircraft that capture the
geometry of the encounter. At these future states, the projections of each aircraft’s horizontal velocity along
the path from its position to the position of the other aircraft are calculated. If the lengths (speeds) of these
projections are close, then neither aircraft has priority. Otherwise, the aircraft whose projection has the
smallest speed has priority. See Figure 3.

If so,vo and si,vi represent these future states of the aircraft, then, in most cases, the ownship has
priority precisely when

velcomp(so,vo, si,vi) > 0, (1)

where velcomp is the function defined by

velcomp(so,vo, si,vi) =


so(x,y)−si(x,y)

‖so(x,y)−si(x,y)‖
· (vo(x,y) + vi(x,y)) if so 6= si

0 if so = si.

Formula (1) is equivalent to the condition that the projection of the intruder’s horizontal velocity, vi(x,y),
toward the ownship has greater length than that of the ownship’s velocity, vo(x,y), toward the intruder (see
Figure 3). In fact, the quantity velcomp(so,vo, si,vi) is equal to the projection of the intruder’s horizontal
velocity minus that of the ownship.

The future states of the aircraft that will be used in the function velcomp to determine priority can be
the future states at any future time, assuming that the ownship and intruder agree on the states. The goal
in picking these future states is that they will be representative of the geometry of the encounter and can be
used to determine priority through geometric reasoning.

The time when the aircraft achieve minimum horizontal separation is known as the time of closest
horizontal approach.3 The proposed priority rules will apply the function velcomp at a time slightly before
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the time of closest horizontal approach. The states of the aircraft just before this time are geometrically
representative of the severity of the encounter. The amount of time before the time of closest horizontal
approach, when these states will be chosen, will be referred to by a parameter tc. It can be set to any
positive real time.

If the aircraft are converging and flying at constant velocities with initial positions of so and si, then the
time of closest horizontal approach is equal to (1/‖(vo(x,y) − vi(x,y))‖2)(so − si) · (vo − vi). If they are not
converging, it is equal to 0. This motivates the definition of the function tca, which computes the time of
closest horizontal approach, given by

tca(so,vo, si,vi) = max(0,
−(so(x,y) − si(x,y)) · (vo(x,y) − vi(x,y))

‖vo(x,y) − vi(x,y)‖2
)

when vo 6= vi and given by tca(so,vo, si,vi) = 0 when vo(x,y) = vi(x,y). It is at the time tca(so,vo, si,vi)−
tc when the state of each aircraft will be chosen for determining priority, where so,vo, si,vi represent the
states of the aircraft at time zero (the current time). However, if the horizontal components vo(x,y) and
vi(x,y) of the aircraft’s velocities are almost equal, in which case the aircraft are flying with nearly the same
direction and speed, then the time tca(so,vo, si,vi) is not stable. In this case, neither aircraft should have
priority, and therefore both should maneuver.

This motivates the definition of a parameter LRelDB, representing a relative speed deadband on the relative
horizontal speed between the aircraft. If the horizontal rules apply, and if ‖vo(x,y)−vi(x,y)‖ < LRelDB, then
neither aircraft will have priority. In general, priority when the horizontal rules apply will be determined by
the following function.

entrycomp(so,vo, si,vi) =

0 if ‖vo(x,y) − vi(x,y)‖ ≤ LRelDB

velcomp(so + t∗vo,vo, si + t∗vi,vi) otherwise

where t∗ = max(0, tca(so,vo, si,vi) − tc). In the second part of this equation, the states of each aircraft
are projected ahead to the time t∗.

If entrycomp(so,vo, si,vi) is positive, then it will typically be the case that the ownship has priority. How-
ever, if it is very closed to zero, then priority may be close to changing between one aircraft and another, so to
ensure uniform stability, both aircraft should be burdened. This is accomplished through another parameter
HorizDB, representing a horizontal deadband. Basically, if the absolute value of entrycomp(so,vo, si,vi) is
no greater than HorizDB, then the aircraft are in a horizontal deadband, and neither aircraft has priority.
This motivates the definition of the following lateral priority function.

lateral priority(so,vo, si,vi) ≡ entrycomp(so,vo, si,vi) > 0 ∧ |entrycomp(so,vo, si,vi)| > HorizDB

The latter part of this definition (after the and sign, ∧) implies that neither aircraft has priority in the
horizontal case when |entrycomp(so,vo, si,vi)| ≤ HorizDB.

The function P, defined below, gives a mathematical definition of a proposed priority function. When it is
known that both aircraft have the same flight mode, priority is determined by the function lateral priority.

P(so,vo, si,vi) ≡ (vertical rules apply(vo,vi) ∧ voz < viz)

∨ (horizontal rules apply(vo,vi) ∧ lateral priority(so,vo, si,vi))

Below, specific examples are given of priority between aircraft in some common encounter situations. It is
important to note that if neither the horizontal rules apply nor the vertical rules apply, then this function
returns false. In such a case, it is unclear, based on perturbations in the data, which rule should apply, so
neither aircraft has priority.

V.D. Properties of the Proposed Priority Function

There are several important properties listed in Section II for a priority function. These properties are
considered here for the priority function P, which is defined above. The following theorem implies that the
function P never allows a case where both aircraft have priority.

Theorem 7. The priority function P satisfies safe?(P).
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Even with small changes to the inputs, the priority function P produces compatible outputs:

Theorem 8. The priority function P satisfies basic stability?(P) and uniform stability?(P).

As noted in Theorem 1 in Section III, it is impossible for any function to satisfy the conditions safe?,
stable?, and be exclusive in the sense that exactly one aircraft is burdened. Thus, the priority function P

was constructed with this limitation in mind, i.e., the priority function P is not exclusive. That is, in some
cases, neither aircraft has priority. One way that neither aircraft has priority is if the horizontal projections
of each aircraft’s velocity toward the other aircraft, at the states where priority is determined, are equal or
nearly equal. In such a case, the aircraft are in a horizontal deadband. For such a case, see Figure 4. The
function P attempts to minimize the number of such cases by reducing the number of places where deadbands
are used.

Projections the Same Length

Neither Has Priority
Figure 4. A Horizontal Deadband

The function P can also be compared with the current rules as outlined in 91.113. In particular, it can be
compared with the geometric rules in 91.113 that are listed at the beginning of Section IV. When aircraft of
the same category are converging at approximately the same altitude (except head-on, or nearly so), rule D
in 91.113 gives the priority to the aircraft to the other’s right. The priority function P does not agree with
this rule. In fact, either aircraft could have priority in this case if the function P is used.

When aircraft are approaching each other head-on, rule E in 91.113 gives neither aircraft priority. How-
ever, the function P sometimes allows one aircraft to have priority in this case. When aircraft are approaching
head on, the slower aircraft usually has priority, except when the speeds of the aircraft are close, in which
case the function agrees with rule E and neither aircraft has priority.

When one aircraft is overtaking another, rule F in 91.113 gives priority to the aircraft that is being
overtaken. In this case, the function P agrees with the current rule, as indicated in Figure 5.

Positive Projection Negative Projection

Priority
Figure 5. An Aircraft Being Overtaken

VI. Concluding Remarks

This paper analyzes priority rules, such as those in Title 14 of the Code of Federal Regulations, Part
91.1132 that determine which of two aircraft on conflicting trajectories should maneuver. The analysis
enables new concepts of operation for the next generation of air traffic systems, such as self-separation, which
may involve different priority rules than the current, well-accepted rules found in 91.113. A mathematical

11 of 12

American Institute of Aeronautics and Astronautics



framework is presented for analyzing such rules, with specific properties in mind, such as safety, exclusiveness,
and stability. A theoretical result is presented that states that it is impossible for a priority function to be
safe (never do both aircraft have priority), stable (compatible results occur even under slight perturbations
to input data), and exclusive (exactly one aircraft has priority in every case).

This paper analyzes, using the mathematical framework developed, the current right-of-way rules for air
traffic given in 91.113. The first formalization of these rules, presented in Section IV, did not immediately
satisfy the key safety property of priority rules, which states that at least one aircraft has priority in every
situation. That is, it is possible that two aircraft are converging, not in a head-on situation, and that each
aircraft is on the other’s right. In this case, it is unclear from the rules in 91.113 which aircraft should have
priority. Another formalization is given for those rules that fixes this problem, by interpreting rule (d) in
91.113 in a particular way. Thus, a specific interpretation of the subjective rules in 91.113 is required to
ensure that there are no cases where both aircraft have priority.

Finally, a new priority rule function is presented that is both safe and stable, which, by the theorem
relating these two properties to exclusiveness, yields some cases where neither aircraft has priority. The
development of this function shows that the rules in 91.113 are not the only rules that satisfy important
operational and safety properties. The proposed priority function works as follows. If the two aircraft have
different flight modes (ascending/descending/cruising), and neither of the aircraft is near a vertical speed
that would change this fact, then the aircraft with the lower vertical speed has priority. If either aircraft is
near a vertical speed where it would change flight modes and either the current or the new mode is possibly
equal to the mode of the other aircraft, then neither aircraft has priority. Otherwise, pick a future time just
before the encounter, and consider the states of each aircraft at that time. At these future states, calculate
the projections of each aircraft’s horizontal velocity along the path from its position toward the position of
the other aircraft. If the lengths (speeds) of these projections are close, then neither aircraft has priority.
Otherwise, the aircraft whose projection has the smallest speed has priority.

The analysis of rules in 91.113 and the proposed priority function show that the mathematical framework
is general enough to verify an arbitrary set of priority rules. Future work will focus on comparing the
proposed priority function with 91.113, through simulation, to determine the effects that their differences
have on airspace operations.
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